Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

نویسندگان

  • Alexander M Puzrin
  • Thomas E Gray
  • Andrew J Hill
چکیده

A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic growth of slip surfaces in catastrophic landslides.

This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The correspondi...

متن کامل

Environmental change, hydrate dissociation, and submarine slope failure along continental margins: the role of saturation anomalies in landslide triggering

Submarine landslides occur along active and passive continental margins and are potentially triggered by numerous factors including the dissociation of gas hydrates. The hazard produced by such landslides can damage infrastructure (oil platforms, telecommunication lines), generate tsunamis, and cause a catastrophic release of methane to the atmosphere and ocean. Here we develop numerical models...

متن کامل

Undersea landslides: extent and significance in the Pacific Ocean, an update

Submarine landslides are known to occur disproportionately in a limited number of environments including fjords, deltas, canyons, volcanic islands and the open continental slope. An evaluation of the progress that has been made in understanding Pacific Ocean submarine landslides over the last 15 years shows that mapping technologies have improved greatly, allowing a better interpretation of lan...

متن کامل

Super-scale Failure of the Southern Oregon Cascadia Margin

Using SeaBeam bathymetry and multichannel seismic reflection records we have identified three large submarine landslides on the southern Oregon Cascadia margin. The area enclosed by the three arcuate slide scarps is approximately 8000 km, and involves an estimated 12,000–16,000 km of the accretionary wedge. The three arcuate slump escarpments are nearly coincident with the continental shelf edg...

متن کامل

Mapping Submarine Landslide: A Case Study in Northern Continental Slope of the South China Sea

Geographical Information Systems is a useful tool for marine geohazard mapping. This paper describes an integrated and systematic map-based approach for identification and characterization of submarine landslide with multidisciplinary data such as multibeam bathymetric data, multichannel seismic data, sidescan sonar and so on. Taking Liwan 31 gas field in northern continental slope of Southern ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 471 2175  شماره 

صفحات  -

تاریخ انتشار 2015